CORRELACIÓN DE LA DEFORMACIÓN DE LOS PLANOS SUPERCONDUCTORES DE CuO₂ CON LA TEMPERATURA CRÍTICA SUPERCONDUCTORA

J.C. González*a, J.W. Flores^b, L. De Los Santos V.^c y A. Bustamante^b

RESUMEN

En los materiales superconductores de óxido de cobre la transferencia interna de carga entre los planos superconductores de CuO_2 y los bloques de reserva de carga es un factor dominante que controla la temperatura crítica superconductora. Los planos superconductores de CuO_2 no son planos en un estricto sentido, sino que poseen cierta deformación, donde la posición del átomo de cobre Cu(2) y los átomos de oxígeno O(2) y O(3) no recaen en un mismo plano, la variación de sus posiciones está muy relacionada con los reemplazos atómicos en los planos superconductores de CuO_2 o en los bloques de reserva de carga. Por lo tanto, correlacionamos los efectos de las sustituciones en la celda unitaria canónica del YBa₂Cu₃O₇, con respecto a la variación de la longitud y el ángulo de enlace entre los átomos de cobre Cu(2) y oxígeno O(2) y O(3) con la temperatura crítica superconductora a través del resultados obtenidos de refinamiento Rietveld de sus patrones de difracción de rayos X en polvo en muestras en polvo policristalinas de: SmBa₂Cu₃O₇, [Y0,90,Pr0,10]Ba₂Cu₃O₇, [Ca,La]Ba₂Cu₃O₇ e YBa₂Cu₃O₇. **Palabras clave:** Materiales de óxido de cobre superconductores, planos superconductores de CuO₂, método Rietveld.

CORRELATION OF PUCKERED CuO2 SUPERCONDUCTING PLANES WITH THE SUPERCONDUCTING CRITICAL TEMPERATURE

ABSTRACT

In copper oxide superconductor materials the internal charge transference between the superconducting planes of CuO_2 and the charge reservoir blocks, it is a key factor that controls the superconducting critical temperature. The superconducting planes of CuO_2 are not planes in a strict sense, the position of the Cu(2) atom and the O(2) and O(3) oxygen atoms are not lying in a same plane, the change of its positions are closely related to atomic replacements in the superconducting planes of CuO_2 or in the charge reservoir blocks. Therefore, we correlates the substitutions effects in the canonical unit cell of YBa₂Cu₃O₇ with regard to length and angle bond variation of copper and oxygen atoms with the superconducting critical temperature obtained by Rietveld refinement of X-ray diffraction patterns in polycrystalline

Rev Soc Quím Perú. 81(4) 2015

^{a*} Laboratorio de Física de Materiales e Ingeniería de Superficies, Universidad deIngeniería y Tecnología (UTEC), Jr. Medrano Silva 165, Lima 4, Perú, jcgonzalez@utec.edu.pe

^b Laboratorio de Cerámicas y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos.

^c Cavendish Laboratory, Department of Physics, University of Cambridge.

powder samples, such as: $SmBa_2Cu_3O_7$, $[Y0,90,Pr0,10]Ba_2Cu_3O_7$, $[Ca,La]Ba_2Cu_3O_7$ and $YBa_2Cu_3O_7$.

Key words: Copper oxide superconducting materials, superconducting planes of CuO₂, Rietveld method.

INTRODUCCIÓN

El descubrimiento de la superconductividad de alta temperatura en los óxidos de cobre en 1986¹ provocó una enorme cantidad de investigación científica innovadora. Desde entonces, en estas casi tres décadas se ha aprendido mucho acerca de las nuevas formas de materia cuántica que se exhiben en estos sistemas de electrones fuertemente correlacionados. Pero se ha logrado tan sólo una comprensión cualitativa de la naturaleza del propio estado superconductor ². Sin embargo, existen aún problemas no resueltos, los cuales incluyen la asombrosa complejidad del diagrama de fase, el protagonismo sin precedentes de diversas formas de fluctuaciones colectivas, y la simplicidad así como la falta de sensibilidad a los detalles del material en el estado 'normal' a temperaturas elevadas ³.

Por otro lado, en el área de ciencia de los nuevos materiales, la sustitución de cationes y/o aniones juega un rol muy importante en la preparación de materiales superconductores de óxido de cobre ⁴, por los posibles reemplazos aliovalentes de cationes y/o aniones en la celda unitaria. Estos reemplazos producen una presión química interna capaz de alterar la ocupancia y la posición de los átomos en los bloques de reserva de carga o en los planos superconductores de CuO₂, debido principalmente a la diferencia en la valencia o radio iónico del catión o anión reemplazado 5. Esta presión química posee una influencia directa sobre la temperatura crítica superconductora (Tc) y la posición de los átomos en los planos superconductores ^{6,7}. Entonces, una mayor o menor transferencia interna de portadores de carga entre los planos superconductores de CuO, y los bloques de reserva de carga está directamente relacionado con la Tc, por tanto es claro que la transferencia de carga es un factor dominante que controla la Tc. Pero los planos superconductores de CuO, no son planos en el sentido estricto, sino que poseen cierta deformación debido a la diferente posición del átomo de cobre Cu(2) con respecto a los átomos de oxígeno O(2) y O(3) que lo rodean, por lo cual los reemplazos aliovalentes en la celda unitaria introducen una fuerte variación en la longitud y el ángulo de enlace entre dichos átomos (véase figura 1).

Figura 1. Vista parcial de la estructura del YBa₂Cu₃O₇ donde se hace énfasis en las posiciones de los átomos de Cu(2), O(2) y O(3).[Adaptado de la Ref. 4].

De otro lado, al analizar los espectros de difracción de rayos X con el método de refinamiento Rietveld no sólo nos ha permitido conocer la posición de los átomos en la celda unitaria sino también cuantificar las magnitudes de la longitud y el ángulo de enlace entre los átomos de Cu(2), O(2) y O(3) ^{9,10}. Brevemente, el refinamiento por el método de Rietveld de un espectro de rayos X consiste en ajustar por mínimos cuadrados los parámetros estructurales, así como los experimentales, al perfil completo del difractograma en polvo ^{10,11}. En el presente trabajo correlacionamos los efectos de las sustituciones catiónicas en la celda unitaria canónica del YBa₂Cu₃O₇ sobre las magnitudes estructurales de la longitud y el ángulo de enlace de los átomos de de Cu(2), O(2) y O(3) con la Tc analizadas a través del refinamiento Rietveld de sus espectros de rayos X en muestras en polvo policristalinas de: SmBa₂Cu₃O₇, [Y0.₉₀,Pr0.₁₀] Ba₂Cu₃O₇, [Ca,La]Ba₂Cu₃O₇ e YBa,Cu₃O₇.

PARTE EXPERIMENTAL

Se prepararon cuatro muestras por dos métodos distintos, a) reacción de estado sólido, tales como: SmBa₂Cu₃O₇, [Y_{0,90}, Pr_{0,10}]Ba₂Cu₃O₇; y b) método sol-gel, tales como: [Ca,La]Ba₂Cu₃O₇ e YBa₂Cu₃O₇. Los detalles experimentales de formación de dichas fases se encuentran descritos en las referencias 8 al 12. Los espectros de rayos X fueron obtenidos a temperatura y presión normales por medio de un difractómetro Bruker en geometría Bragg-Brentano en un rango de $2\Theta = 10^{\circ}$ a 80° grados y un paso de $\Delta 2\Theta = 0,02^{\circ}$. El haz de rayos X contenía las radiaciones Cu-K α 1 y Cu-K α 2 correspondiendo a las longitudes de onda de 1,5405Å y 1,5443Å, respectivamente, con una relación de intensidades igual a 0,50.

Los patrones de difracción en polvo fueron refinados mediante el método denominado refinamiento Rietveld por medio del programa FullProf¹³ versión 2.05 (Julio 2011). El fondo del espectro de rayos X en polvo fue refinado utilizando una ecuación polinómica de quinto grado. Para describir los perfiles de las reflexiones se utilizó una función pseudo-Voigt¹⁴. No se aplicaron correcciones por absorción o microabsorción. Los valores R (R_p, R_{wp} y R_{exp}) así como el parámetro χ^2 fueron utilizados como criterios numéricos de convergencia para el refinamiento. La definición de los parámetros R se encuentra descrita en la referencia 15. Para asegurar la convergencia de los parámetros estructurales, el refinamiento Rietveld fue realizado siguiendo el orden descrito en la referencia¹⁶.

Las medidas magnéticas fueron realizadas en un magnetómetro del tipo MPMS (*Magnetic Property Measurement System*) con dispositivo SQUID de la firma Quantum Design aplicando un campo de intensidad magnética externo de decenas de Oersteds en un rango de temperaturas de 5 a 100 K para un proceso de medida denominado enfriamiento en campo nulo (Zero Field Cooling)¹⁷.

RESULTADOS Y DISCUSIÓN

La figura 2 muestra el espectro de difracción de rayos X junto con el perfil calculado para la fase de SmBa₂Cu₃O₇ (Simetría Pmmm). Observamos que los valores obtenidos de los parámetros R y χ^2 fueron: R_p =69,2, R_{wp} =56,9, R_{exp} =24,7 y χ^2 = 5,308, respectivamente. El valor de χ^2

obtenido no es cercano a uno debido a que en esta muestra se refinó cuantificando 3 fases: $SmBa_2Cu_3O_7$ (17,0±1,19%), $Sm[Sm_{0,50}Ba_{0,50}]_2Cu_3O_7$ (78,63±1,84%), y CuO (4,37±0,38%), donde observamos que la segunda fase presenta un desorden catiónico, denominado así por el reemplazo parcial del catión Sm^{3+} (radio iónico 1,13 Å) en el sitio de Ba^{2+} (radio iónico 1,38 Å), una situación que es usual encontrar en muestras superconductoras de óxido de cobre. La fase de $SmBa_2Cu_3O_7$ es isoestructural como la fase YBa_2Cu_3O₇ por el reemplazo total de Sm^{3+} (radio iónico 1,13 Å) por Y^{3+} (radio iónico 0,95 Å). Para los cálculos de la deformación solamente se utilizó la fase de $SmBa_2Cu_3O_7$, cuyos resultados más resaltantes del refinamiento se muestran en la tabla 1. Se obtiene que la coordenada fraccionaria z del átomo de oxígeno O(2) es menor con respecto a los átomos de Cu(2) y O(3), pero la posición del O(3) es mayor que los otros dos, por lo cual el ángulo de enlace entre Cu(2)-O(3)-Cu(2) es mayor en aproximadamente 11° con respecto al ángulo de enlace entre Cu(2)-O(2)-Cu(2).

Figura 2. Espectro de difracción calculado (línea continua) junto al experimental (+++) de la muestra SmBa₂Cu₃O₇ (R_p =69,2, R_{wp} =56,9, R_{exp} =24,7 y χ^2 = 5,308).

Posiciones atómicas (Å)	
Cu(2) (0, 0, z)	0,3594
O(2) (0,5, 0, z)	0,3183
O(3) (0, 0.5, z)	0,3626
Distancia (Å)	
Cu(2) - Cu(2)	3,2636
Angulo (Grados)	
Cu(2)-O(2)-Cu(2)	48,85°
Cu(2)-O(3)-Cu(2)	60,12°

Tabla 1	. Selección	de parámetro	s refinados para	la fase	SmBa ₂ Cu ₃ O ₇ .
---------	-------------	--------------	------------------	---------	--

Por otro lado, la figura 3 presenta el patrón de difracción de rayos X refinado para la muestra $[Y_{0,90}, Pr_{0,10}]Ba_2Cu_3O_7$ (Simetría Pmmm), donde los valores obtenidos de los parámetros R y χ^2 fueron: Rp =31,0, R_{wp} =37,1, R_{exp} =25,0 y χ^2 = 2,20⁹. El valor de χ^2 obtenido es cercano a 1,0; esta muestra se refinó cuantificando tan solo una fase: $[Y_{0,90}, Pr_{0,10}]Ba_2Cu_3O_7$ (100,0±1,40%). No se encontró trazas de presencia de la fase precursora de CuO, ni las fases espurias de BaCuO₂ o Y₂BaCuO₅. Cabe resaltar en este óxido que el catión Pr³⁺ (radio iónico 1,16 Å) magnético reemplaza el 10% del sitio de Y³⁺ (radio iónico 0,95 Å), a diferencia del primer compuesto donde ambos átomos, Sm³⁺ e Y³⁺ son no magnéticos. Solamente ciertos parámetros refinados seleccionados se exponen en la tabla 2. Se mantiene una diferencia de aproximadamente 0,1 Å en la coordenada fraccionaria z del átomo de Cu(2) con respecto a los átomos de O(2) y O(3). La diferencia entre los ángulos de enlace es ahora cercana a 5°.

Figura 3. Espectro de difracción calculado (línea continua) junto al experimental (+++) de la muestra $[Y_{0,90}, Pr_{0,10}]Ba_2Cu_3O_7$ (R_p=31,0, R_{wp}=37,1, R_{exp}=25,0 y χ^2 = 2,20)⁹.

Tabla 2. Selección de parámetros refinados para la fase [Ca,La]Ba,Cu,O,⁸.

Posiciones atómicas (Å)	
Cu(2) (0, 0, z)	0,3658
O(2) (0,5, 0, z)	0,3819
O(3) (0, 0.5, z)	0,3647
Distancia (Å)	
Cu(2) - Cu(2)	3,1285
Angulo (Grados)	
Cu(2)-O(2)-Cu(2)	62,60°
Cu(2)-O(3)-Cu(2)	57,89°

En la figura 4 se expone el patrón de rayos X refinado de la muestra [Ca,La]Ba,Cu₂O₇ (Simetría P4/mmm), donde los valores obtenidos de los parámetros R y χ^2 fueron: R = 46,9, $R_{wp} = 35,1, R_{exp} = 34,8 \text{ y} \chi^2 = 1,022^{8}$. Esta estructura ha estabilizado en una fase tetragonal (P4/ mmm) a diferencia de las dos primeras que estabilizaron en una fase ortorrómbica (Pmmm), al incorporar cationes de Ca²⁺ (radio iónico 1,05 Å) y La³⁺ (radio iónico 1,15 Å) en el sitio de Y^{3+} (radio iónico 0,95 Å) en la celda unitaria. Por otro lado, el valor de χ^2 obtenido es muy cercano a 1; donde la estructura propuesta para el refinamiento corresponde a la estructura experimental. Esta muestra se refinó cuantificando tan solo una fase tetragonal: [Ca,La] Ba₂Cu₂O₂ (100,0 \pm 0,35%). Al igual que la segunda muestra analizada, no se encontraron evidencias de la presencia de la fase precursora de CuO, ni tampoco de las fases espurias de BaCuO, o Y,BaCuO, porque quizás el contenido de las mismas se encuentre por debajo del límite de detección de la técnica de difracción de rayos X. Otra técnica que tiene una mayor sensibilidad para las fases precursoras y espurias del YBa₂Cu₃O₇ es la espectroscopía Raman¹⁸, pero el presente trabajo tiene mayor interés en la fase principal refinada que las fases precursoras y/o espurias. En la tabla 3 se presentan una selección de los parámetros refinados obtenidos, donde se mantiene también una diferencia de aproximadamente 0,1 Å en la coordenada fraccionaria z del átomo de Cu(2) con respecto al átomo de O(2). Al ser ahora una estructura tetragonal la posición del átomo de O(3) se convierte en O(2).

Figura 4. Espectro de difracción calculado (línea continua) junto al experimental (+++) de la muestra [Ca,La]Ba₂Cu₃O₇ (R_p =46,9, R_{wp} =35,1, R_{exp} =34,8 y χ^2 =1,022)⁸.

Tabla 3. Selección de parámetros refinados para la fase [Ca,La]Ba₂Cu₃O₇⁸.

0,3680
0,3579
3,07541
55,31°

En la figura 5 se exhibe el espectro de difracción refinado de la fase YBa₂Cu₃O₇ (Simetría Pmmm), donde los valores obtenidos de los parámetros R y χ^2 fueron: R_p =42,2, R_{wp} =33,6, R_{exp}=32,6 y χ^2 = 1,07¹⁰. Esta muestra se refinó cuantificando dos fases: YBa₂Cu₃O₇ (98,82±1,28%) y CuO (1,18±0,01%). No se encontró trazas de las fases espurias de BaCuO₂ o Y₂BaCuO₅, porque quizás su contenido se encuentre por debajo del límite de detección de la técnica. En la tabla 4 se presentan una selección de los parámetros refinados.

Figura 5. Espectro de difracción calculado (línea continua) junto al experimental (+++) de la muestra YBa₂Cu₃O₇ (R_p =42,2, R_{wp} =33,6, R_{exp} =32,6 y χ^2 = 1,07)¹⁰.

Tabla 4. Selección de	parámetros refinados j	para la fase YBa2Cu3O7 10
-----------------------	------------------------	---------------------------

Posiciones atómicas (Å)	
Cu(2) (0, 0, z)	0,3666
O(2) (0,5, 0, z)	0,3283
O(3) (0, 0.5, z)	0,3669
Distancia (Å)	
Cu(2) - Cu(2)	3,1218
Angulo (Grados)	
Cu(2)-O(2)-Cu(2)	48,68°
Cu(2)-O(3)-Cu(2)	58,30°

Con los datos obtenidos del refinamiento mediante el método de Rietveld mostrados en las tablas del 1 al 4 se los correlacionaron con sus respectivos valores de temperatura crítica superconductora, como se exhibe en las figuras 6a y 6b. Se observa que la variación de los desplazamientos del átomo de oxígeno O(3), con respecto al átomo de Y, está en torno a 1,5° grados, el cual es mucho menor a la variación de los átomos de O(2) que se encuentra alrededor de 8° grados. Para el ángulo entre los átomos Cu(2)-O(2)-Cu(2) con un valor de 48° grados conlleva a una mayor Tc, mientras que el ángulo entre los átomos Cu(2)-O(3)-Cu(2)

de 58° grados exhibe un máximo de Tc. En el caso del Sm, se debe tener cuidado pues la disminución de la Tc puede ser explicado, por un lado como menciona Kambe⁷, como un cambio en la estructura electrónica de la muestra, pues el átomo de Sm³⁺ tiene un radio iónico de 1,13 Å mientras el átomo de Y³⁺ posee un radio iónico de 0,95 Å. Por otro lado, se desprende del trabajo de Zhan¹⁹ que podemos declarar que la presión química interna es mayor en las posiciones de los átomos de O(2) que en las posiciones del átomo de O(3) en la base de la pirámide de CuO₅ en los planos superconductores de CuO₂ con respecto a la celda del YBa₂Cu₃O₇.

Figura 6. Correlación de los ángulos de los átomos de Cu(2), O(2) y O(3) con la temperatura crítica superconductora de las muestras bajo estudio.

Los diferentes materiales superconductores de óxido de cobre tienen en su estructura, octaedros, pirámides y planos. Según Kambe⁷, algunos octaedros de CuO₆ poseen planos de CuO₂ horizontalmente uniformes, mientras que todos las pirámides CuO₅ poseen una deformación en su base, la cual forma parte de los planos de CuO, (véase figura 1). Esta distorsión de la base de las pirámides proviene de la asimetría de la pirámide, la cual sugiere por el hecho que el orbital $Cu_{x^2+v^2}$ está ligado con el orbital $O_x p$ de los átomos de oxígeno vecinos en el octaedro de CuO₆. Su dirección de enlace es hacia el vértice del octaedro alrededor de Cu. Si un átomo de oxígeno del octaedro es removido, los otros átomos de oxígeno que rodean al Cu se moverán para compensar el desbalance, resultando en la formación de una deformación en la pirámide de CuO_s. Así también se correlacionó la distancia de separación entre dos planos superconductores de CuO, con la temperatura crítica superconductora y el ángulo Cu(2)-O(2)-Cu(2) como se detallan en la figura 7a y 7b. Por el trabajo de Shimuzu²⁰ se conoce que la distancia de separación entre dos átomos de Cu(2) pertenecientes a dos planos superconductores adyacentes deberá ser menor a un valor de 4 Å para obtener valores de Tc por encima de los 50 K, lo cual se corrobora nuestros resultados en compuestos derivados de la estructura canónica del YBa, Cu, O₇, como se detalla en la figura 7a. Por tanto, cuando aumenta o disminuye la distancia de separación entre los planos superconductores con respecto a su valor crítico se afecta directamente la temperatura crítica superconductora.

Figura 7. Correlación de la distancia de separación entre dos planos de CuO₂ y los ángulos de los átomos de Cu(2), O(2) y O(3) con la Tc.

Finalmente, se observa en la figuras 7a y 7b que para el caso del Sm³⁺ el aumento de la distancia de separación de los planos superconductores con respecto al Y³⁺ afecta considerablemente la Tc perjudicando entonces la transferencia interna de carga entre los planos de CuO² y los bloques de reserva de carga resultando en un menoscabo de la Tc reduciéndose a 65 K, mientras para el caso del [Ca,La]Ba₂Cu₃O₇ la distancia de separación es menor que Y³⁺ afectando ligeramente la Tc (85 K). Resumiendo, la deformación de los planos superconductores CuO₂ resulta un factor importante que modula la distancia de separación de los planos por donde circula la supercorriente, por lo tanto modula la amplitud de los portadores de carga que se transfieren por efecto túnel del bloque de reserva de carga al plano superconductor de CuO₂.

CONCLUSIONES

El método de Rietveld es una técnica muy poderosa al alcance de los laboratorios peruanos para obtener información cuantitativa de la estructura a través del espectro de DRX en polvo. De los resultados obtenidos observamos que existe una fuerte correlación entre la deformación de los planos de CuO_2 con la temperatura crítica superconductora (Tc). Entre las muestras estudiadas, los reemplazos aliovalentes en el plano de itrio producen una presión química que afectan la Tc. Entonces la deformación y la distancia de separación de los planos superconductores de CuO_2 son factores importantes que también afecta la Tc. Esta deformación en los planos de CuO_2 modula la separación entre los planos y por tanto modula la amplitud de tunelamiento entre el bloque de reserva de carga y el plano superconductor de CuO_2 .

AGRADECIMIENTO

JCG agradece a la Universidad de Ingeniería y Tecnología (UTEC) por las facilidades para la pesquisa. JWF y AB agradecen al Vicerrectorado de Investigación de la Universidad Nacional Mayor de San Marcos por el apoyo económico brindado. LDV agradece al *Engineering and Physical Science Research Council* (EPSRC-RG63021) por el apoyo económico brindado.

BIBLIOGRAFÍA

- 1. Bednorz J.G., Muller K.A. Z. Phys. B Cond. Matter 1986; 64: 189 193.
- Le Tacon M., Ghiringhelli G., Chaloupka J., Moretti Sala M., Hinkov V., Haverkort M. W., et al Nature Phys. 2011;7: 725 - 730.
- Keimer B., Kivelson S. A., Norman M. R., Uchida S., Zaanen J. Nature 2015; 518: 179 - 186.
- 4. González J.C., Bustamante A. Rev. Inv. Fis. 2013; 16: 131602103
- Narlikar A. V., Narasimha C. V., Agarwal S. K. Substitutional studies on high temperature superconductors, page 341, in Studies of High Temperature Superconductors: Advances in research and applications, A. Narlikar, Editor, Nova Science Publishers. New York; 1989.
- 6. McEntee J. Chemistry World 2008; 5: 42 47.
- 7. Kambe S., Ishii O. Physica C 2000; 341-348: 555.
- Feijoo J., Bustamante A., De Los Santos V. L., Williems B. L., Osorio A. M., González J.C. Rev. Soc. Quím. Perú. 2010; 76: 43 53.
- Flores J., Bustamante A., Feijoo J., González J. C., Sánchez D., Cernicchiaro Geraldo R. C. *Rev. Inv. Fis.* 2011; 14: 111402102.
- 10. González J. C., Osorio A. M., Bustamante A. Rev. Soc. Quim. Peru 2011; 77: 249 258.
- González J. C., Osorio A. M., Bustamante A., Carhuancho M. Rev. Per. Quim Ing. Quim. 2006; 9: 11 - 17.
- Bustamante A., Osorio A. M., González J. C., Carhuancho M., Salas N., De Los Santos V. L., De La Cruz N., Díaz A. *Rev. Per. Quím. Ing. Quím.* 2006; 7: 3 - 8.
- FullProf Suite. www.ill.eu/sites/fullprof/php/downloads.html (último acceso 7 octubre 2015)
- 14. Young R. A., Wiles D. B. J. Appl. Cryst. 1982; 15: 430 438.
- 15. Young R. A. Introduction to the Rietveld method. In: R.A. Young Editors. The Rietveld method. Oxford University Press. United Kingdom; 1993.
- González J. C., Lándinez D. A., Albino Aguiar J., Bustamante A. *Physica C* 2001; 354: 375 – 378.
- 17. González J.C., Osorio A. M., Bustamante A. Rev. Inv. Fis. 2009; 12: 6 15.
- González J.C., Osorio A. M., Marín R., Castro A. Rev. Per. Quím Ing. Quím. 2005; 8 12.
- 19. Zhang X., Wang L. Physica C 2001; 356: 219 224.
- 20. Shimizu K, Nobumasa H., Kawai T. Supercond. Sci. Technol. 1991; 4: S448 S450.