PRONÓSTICO DE LAS CONCENTRACIONES DE MATERIAL PARTICULADO EN EL AIRE (PM10) UTILIZANDO REDES NEURONALES ARTIFICIALES: CASO ESTUDIO EN EL DISTRITO DE ATE, LIMA
Resumen
La presente investigación tuvo como objetivo evaluar el desempeño del modelo de Redes Neuronales Artificiales (RNA) para pronosticar las concentraciones de PM10 en el aire, para lo cual se hizo un caso estudio para el distrito de Ate, Lima. Para ello se desarrolló distintas arquitecturas de RNA usando como datos de entrada a los registros de contaminantes del aire y variables meteorológicas obtenidas de la Estación de Monitoreo de la Calidad del Aire “ATE” y datos simulados del modelo WRF-CHEM. Las diferentes arquitecturas de RNA pasaron por un proceso de entrenamiento y verificación, y su desempeño se evaluó mediante
el Error Cuadrático Medio (ECM), la precisión (BIAS) y el coeficiente de determinación (R2). Se determinó que la arquitectura que tiene un mejor desempeño tuvo 19 neuronas en la capa oculta, con valores de 0,0230 para el ECM, 0,5308 para la BIAS y 0,823 para el R2, asimismo, esta puede brindar pronósticos hasta con 6 horas de antelación. Este estudio puede contribuir a la implementación de Sistemas de Alertas Tempranas (SAT) sobre posibles incrementos en el aire de las concentraciones de PM10.
Descargas
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Revista Arbitrada
Derechos reservados: Prohibido el uso total o parcial del material de esta revista sin indicar la fuente de origen.
Nota: Las referencias comerciales que aparecen en los trabajos no constituyen una recomendación de la
Sociedad Química del Perú